First class lazy values tie implicit recursive knots

Traversals and transformations of recursive types (eg. cons lists or trees) must themselves be recursive. Consequently type class instances which perform such operations must be recursive values in turn. This is problematic in Scala at the both the value and the type levels: at the value level the issue is that recursive type class instances would have to be constructed lazily, whilst Scala doesn't natively support lazy implicit arguments; at the type level the issue is that during the type checking of expressions constructing recursive implicit values the implicit resolution mechanism would revisit types in a way that would trip the divergence checker.

The Lazy[T] type constructor and associated macro in shapeless addresses both of these problems in many cases. It is similar to Scalaz's Need[T] and adds lazy implicit construction and suppression of divergence checking. This supports constructions such as...

sealed trait List[+T]
case class Cons[T](hd: T, tl: List[T]) extends List[T]
sealed trait Nil extends List[Nothing]
case object Nil extends Nil

trait Show[T] {
  def apply(t: T): String

object Show {
  // Base case for Int
  implicit def showInt: Show[Int] = new Show[Int] {
    def apply(t: Int) = t.toString

  // Base case for Nil
  implicit def showNil: Show[Nil] = new Show[Nil] {
    def apply(t: Nil) = "Nil"

  // Case for Cons[T]: note (mutually) recursive implicit argument referencing Show[List[T]]
  implicit def showCons[T](implicit st: Lazy[Show[T]], sl: Lazy[Show[List[T]]]): Show[Cons[T]] = new Show[Cons[T]] {
    def apply(t: Cons[T]) = s"Cons(${show(t.hd)(st.value)}, ${show(})"

  // Case for List[T]: note (mutually) recursive implicit argument referencing Show[Cons[T]]
  implicit def showList[T](implicit sc: Lazy[Show[Cons[T]]]): Show[List[T]] = new Show[List[T]] {
    def apply(t: List[T]) = t match {
      case n: Nil => show(n)
      case c: Cons[T] => show(c)(sc.value)

def show[T](t: T)(implicit s: Show[T]) = s(t)

val l: List[Int] = Cons(1, Cons(2, Cons(3, Nil)))
show(l) should be(res0)