The following set of sections represent the exercises contained in the book "Functional Programming in Scala", written by Paul Chiusano and Rúnar Bjarnason and published by Manning. This content library is meant to be used in tandem with the book. We use the same numeration for the exercises for you to follow them.

For more information about "Functional Programming in Scala" please visit its official website.

**NOTE:** This section is only for educational purposes. In Scala 2.13, scala.collection.immutable.Stream
is deprecated and scala.collection.immutable.LazyList is recommended for replacement. For more information,
check the Scala Stream
and LazyList
documentation.

**Exercise 5.1:**

Now let's write a few helper functions to make inspecting streams easier, starting with a function to convert a
`Stream`

to a `List`

(which will force its evaluation):

```
def toList[A](s: Stream[A]): List[A] =
s match {
case Cons(h, t) => h() :: toList(t())
case _ => List()
}
val s = Stream(1, 2, 3)
toList(s) shouldBe res0
```

**Exercise 5.2:**

Let's continue by writing the function `take`

for returning the first `n`

elements of a `Stream`

. Note that in the
following implementation, we're using `Stream`

's smart constructors `cons`

and `empty`

, defined as follows:

```
def cons[A](hd: => A, tl: => Stream[A]): Stream[A] = {
lazy val head = hd
lazy val tail = tl
Cons(() => head, () => tail)
}
def empty[A]: Stream[A] = Empty
```

```
def take[A](s: Stream[A], n: Int): Stream[A] =
s match {
case Cons(h, t) if n > 0 => cons[A](h(), t().take(n - res0))
case Cons(h, _) if n == 0 => cons[A](h(), Stream.empty)
case _ => Stream.empty
}
take(Stream(1, 2, 3), 2).toList shouldBe List(1, 2)
```

`drop`

is similar to `take`

, but skips the first `n`

elements of a `Stream`

instead:

```
def drop[A](s: Stream[A], n: Int): Stream[A] =
s match {
case Cons(_, t) if n > 0 => t().drop(n - res0)
case _ => s
}
drop(Stream(1, 2, 3, 4, 5), 2).toList shouldBe List(3, 4, 5)
```

**Exercise 5.3:**

We can also implement `takeWhile`

to return all starting elements of a `Stream`

that match a given predicate:

```
def takeWhile[A](s: Stream[A], f: A => Boolean): Stream[A] =
s match {
case Cons(h, t) if f(h()) => cons(h(), t() takeWhile f)
case _ => Stream.empty
}
takeWhile(Stream(1, 2, 3, 4, 5), (x: Int) => x < 3).toList shouldBe res0
takeWhile(Stream(1, 2, 3, 4, 5), (x: Int) => x < 0).toList shouldBe res1
```

Laziness lets us separate the description of an expression from the evaluation of that expression. This gives us
a powerful ability — we may choose to describe a “larger” expression than we need, and then evaluate only a portion
of it. As an example, let’s look at the function exists that checks whether an element matching a `Boolean`

function exists in this Stream:

```
def exists(p: A => Boolean): Boolean = this match {
case Cons(h, t) => p(h()) || t().exists(p)
case _ => false
}
```

**Exercise 5.4:**

Let's implement `forAll`

, a function that checks that all elements in the `Stream`

match a given predicate. Note
that the implementation will stop as soon as it encounters a non-matching value.

```
def forAll[A](s: Stream[A], f: A => Boolean): Boolean =
s.foldRight(res0)((a, b) => f(a) && b)
forAll(Stream(1, 2, 3), (x: Int) => x % 2 == 0) shouldBe false
forAll(Stream("a", "b", "c"), (x: String) => x.size > 0) shouldBe true
```

**Exercise 5.5:**

Let's put `foldRight`

to good use, by implementing `takeWhile`

based on it:

```
def takeWhile_1(f: A => Boolean): Stream[A] =
foldRight(empty[A])((h, t) =>
if (f(h)) cons(h, t)
else empty)
```

**Exercise 5.6:**

We can also do the same with `headOption`

:

`def headOption: Option[A] = foldRight(None: Option[A])((h, _) => Some(h))`

**Exercise 5.7:**

Implementations for `map`

, `filter`

, `append`

and `flatMap`

using `foldRight`

should sound familiar already:

```
def map[B](f: A => B): Stream[B] = foldRight(empty[B])((h, t) => cons(f(h), t))
def filter(f: A => Boolean): Stream[A] = foldRight(empty[A])((h, t) =>
if (f(h)) cons(h, t)
else t)
def append[B >: A](s: => Stream[B]): Stream[B] = foldRight(s)((h, t) => cons(h, t))
def flatMap[B](f: A => Stream[B]): Stream[B] = foldRight(empty[B])((h, t) => f(h) append t)
```

**Exercise 5.x:**

Let's look at a simplified program trace for the next piece of code.

`Stream(1, 2, 3, 4).map(_ + 10).filter(_ % 2 == 0)`

We'll convert that expression to a `List`

to force evaluation. Try to follow with what's happening in each step:

```
val startingPoint = Stream(1, 2, 3, 4).map(_ + 10).filter(_ % 2 == 0).toList
// Apply map to the first element:
val step1 = cons(res0, Stream(2, 3, 4).map(_ + 10)).filter(_ % 2 == 0).toList
// Apply filter to the first element:
val step2 = res1.map(_ + 10).filter(_ % 2 == 0).toList
// Apply map to the second element:
val step3 = cons(12, res2.map(_ + 10)).filter(_ % 2 == 0).toList
// Apply filter to the second element. Produce the first element of the result:
val step4 = 12 :: Stream(3, 4).map(_ + 10).filter(_ % 2 == 0).toList
val step5 = 12 :: cons(res3, res4.map(_ + 10)).filter(_ % 2 == 0).toList
val step6 = 12 :: Stream(4).map(_ + 10).filter(_ % 2 == 0).toList
val step7 = 12 :: cons(res5, Stream[Int]().map(_ + 10)).filter(_ % 2 == 0).toList
// Apply filter to the fourth element and produce the final element of the result.
val step8 = 12 :: 14 :: Stream[Int]().map(_ + 10).filter(_ % 2 == 0).toList
// map and filter have no more work to do, and the empty stream becomes the empty list.
val finalStep = 12 :: 14 :: List()
startingPoint shouldBe step1
step1 shouldBe step2
step2 shouldBe step3
step3 shouldBe step4
step4 shouldBe step5
step5 shouldBe step6
step6 shouldBe step7
step7 shouldBe step8
step8 shouldBe finalStep
```

**Exercise 5.x:**

Here’s an example of an infinite `Stream`

of `1`

s:

`val ones: Stream[Int] = Stream.cons(1, ones)`

The functions we’ve written so far only inspect the portion of the stream needed to generate the demanded output. Take a look at this example:

```
ones.take(5).toList shouldBe res0
ones.exists(_ % 2 != 0) shouldBe res1
ones.map(_ + 1).exists(_ % 2 == 0) shouldBe res2
ones.forAll(_ != 1) shouldBe res3
```

**Exercise 5.8:**

Let's generalize `ones`

slightly to the function `constant`

, which returns an infinite `Stream`

of a given value:

```
def constant[A](a: A): Stream[A] = {
lazy val tail: Stream[A] = Cons(() => a, () => tail)
tail
}
```

**Exercise 5.9:**

Of course, we can generate `number series`

with `Stream`

s. For example, let's write a function that generates an
infinite stream of integers (n, n + 1, n + 2...):

```
def from(n: Int): Stream[Int] =
cons(n, from(n + res0))
from(100).take(5).toList shouldBe List(100, 101, 102, 103, 104)
```

**Exercise 5.10:**

We can also create a function `fibs`

that generates the infinite stream of Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8...

```
val fibs = {
def go(f0: Int, f1: Int): Stream[Int] =
cons(f0, go(f1, f0 + f1))
go(res0, res1)
}
fibs.take(7).toList shouldBe List(0, 1, 1, 2, 3, 5, 8)
```

**Exercise 5.11:**

Now we're going to write a more general stream-building function: `unfold`

which takes an initial state, and
a function for building both the next state and the next value in the stream to be generated:

```
def unfold[A, S](z: S)(f: S => Option[(A, S)]): Stream[A] = f(z) match {
case Some((h, s)) => cons(h, unfold(s)(f))
case None => empty
}
```

**Exercise 5.12:**

Now that we have `unfold`

, let's rewrite our previous generator functions based on it, starting from `fibs`

:

```
val fibsViaUnfold =
unfold((res0, res1)) { case (f0, f1) => Some((f0, (f1, f0 + f1))) }
fibsViaUnfold.take(7).toList shouldBe List(0, 1, 1, 2, 3, 5, 8)
```

`from`

follows a similar principle, albeit a little simpler:

```
def fromViaUnfold(n: Int) = unfold(n)(n => Some((n, n + res0)))
fromViaUnfold(100).take(5).toList shouldBe List(100, 101, 102, 103, 104)
```

Again, `constant`

can be implemented in terms of `unfold`

in a very similar way:

`def constantViaUnfold[A](a: A) = unfold(a)(_ => Some((a, a)))`

Follow the same pattern to implement `ones`

using `unfold`

:

```
val onesViaUnfold = unfold(1)(_ => res0)
onesViaUnfold.take(10).toList shouldBe List(1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
```

**Exercise 5.13:**

Now we're going to re-implement some of the higher-order functions for `Stream`

s, starting with map:

```
def mapViaUnfold[B](f: A => B): Stream[B] = unfold(this) {
case Cons(h, t) => Some((f(h()), t()))
case _ => None
}
```

`take`

can also be rewritten via `unfold`

, let's try it:

```
def takeViaUnfold[A](s: Stream[A], n: Int): Stream[A] =
unfold((s, n)) {
case (Cons(h, t), 1) => Some((h(), (Stream.empty, res0)))
case (Cons(h, t), n) if n > 1 => Some((h(), (t(), n - res1)))
case _ => None
}
takeViaUnfold(Stream(1, 2, 3, 4, 5), 5).toList shouldBe List(1, 2, 3, 4, 5)
```

Let's continue by rewritting `takeWhile`

in terms of `unfold`

:

```
def takeWhileViaUnfold(f: A => Boolean): Stream[A] = unfold(this) {
case Cons(h, t) if f(h()) => Some((h(), t()))
case _ => None
}
```

We can also bring back functions we saw previously with `List`

s, as `zipWith`

:

```
def zipWith[B, C](s2: Stream[B])(f: (A, B) => C): Stream[C] = unfold((this, s2)) {
case (Cons(h1, t1), Cons(h2, t2)) =>
Some((f(h1(), h2()), (t1(), t2())))
case _ => None
}
```

`zipAll`

can also be implemented using `unfold`

. Note that it should continue the traversal as long as either
stream has more elements - it uses `Option`

to indicate whether each stream has been exhausted:

```
def zipAll[B](s2: Stream[B]): Stream[(Option[A], Option[B])] = zipWithAll(s2)((_, _))
def zipWithAll[B, C](s2: Stream[B])(f: (Option[A], Option[B]) => C): Stream[C] =
Stream.unfold((this, s2)) {
case (Empty, Empty) => None
case (Cons(h, t), Empty) => Some(f(Some(h()), Option.empty[B]) -> (t(), empty[B]))
case (Empty, Cons(h, t)) => Some(f(Option.empty[A], Some(h())) -> (empty[A] -> t()))
case (Cons(h1, t1), Cons(h2, t2)) => Some(f(Some(h1()), Some(h2())) -> (t1() -> t2()))
}
```

**Exercise 5.14:**

Now we're going to try to implement `startsWith`

using the functions we've seen so far:

```
def startsWith[A](s: Stream[A]): Boolean =
zipAll(s).takeWhile(!_._2.isEmpty) forAll {
case (h, h2) => h == h2
}
```

**Exercise 5.15:**

We can also write `tails`

using `unfold`

. `tails`

returns the `Stream`

of suffixes of a given `Stream`

,
starting with the original `Stream`

. For example, for `Stream(1,2,3)`

, it should return
`Stream(Stream(1,2,3), Stream(2,3), Stream(3), Stream())`

.

```
def tails[A](s: Stream[A]): Stream[Stream[A]] =
unfold(s) {
case Empty => None
case s1 => Some((s1, s1 drop res0))
} append Stream(Stream.empty)
tails(Stream(1, 2, 3)).toList
.map(_.toList) shouldBe List(List(1, 2, 3), List(2, 3), List(3), List())
```

**Exercise 5.16:**

We can generalize tails to the function scanRight, which is like a `foldRight`

that returns a stream of the
intermediate results:

```
def scanRight[B](z: B)(f: (A, => B) => B): Stream[B] =
foldRight((z, Stream(z)))((a, p0) => {
lazy val p1 = p0
val b2 = f(a, p1._1)
(b2, cons(b2, p1._2))
})._2
```

For example:

`Stream(1, 2, 3).scanRight(0)(_ + _).toList shouldBe res0`